\( \newcommand{\combin}[2]{{}^{#1}C_{#2} } \newcommand{\cmod}[3]{#1 \equiv #2\left(\bmod {}{#3}\right)} \newcommand{\mdc}[2]{\left( {#1},{#2}\right)} \newcommand{\mmc}[2]{\left[ {#1},{#2}\right]} \newcommand{\cis}{\mathop{\rm cis}} \newcommand{\sen}{\mathop{\rm sen}} \newcommand{\senq}{\mathop{\rm sen^2}} \newcommand{\tg}{\mathop{\rm tg}} \newcommand{\tgq}{\mathop{\rm tg^2}} \newcommand{\arctg}{\mathop{\rm arctg}} \newcommand{\arcsen}{\mathop{\rm arcsen}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\tr}[1]{ \textnormal{Tr}\left({#1}\right)} \newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\H}{\mathbb{H}} \newcommand{\vect}[1]{\overrightarrow{#1}} \newcommand{\Mod}[1]{\ (\mathrm{mod}\ #1)} \)

segunda-feira, 12 de outubro de 2020

Exemplos de domínios de funções com mais de uma variável

[Este é um post que será actualizado no futuro]

Exemplo 1:
\[ f(x,y)=\arcsen \left(\frac{y}{x}\right)\]
\[D_f=\{(x,y)\in \R^2: x\neq 0 \land -1\leq\frac{y}{x}\leq 1\}\]

\[ \left\{ {\begin{array}{c} { - 1 \le \frac{y}{x}} \\ {\frac{y}{x} \le 1} \\ \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{c} {0 \le \frac{y}{x} + 1} \\ {0 \le 1 - \frac{y}{x}} \\ \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{c} {0 \le \frac{{y + x}}{x}} \\ {0 \le \frac{{x - y}}{x}} \\ \end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{c} {\left( {y + x \ge 0 \wedge x > 0} \right) \vee \left( {y + x \le 0 \wedge x < 0} \right)} \\ {\left( {x - y \ge 0 \wedge x > 0} \right) \vee \left( {x - y \le 0 \wedge x < 0} \right)} \end{array}} \right. \] \[ \Leftrightarrow \left\{ {\begin{array}{c} {\left( {y \ge - x \wedge x > 0} \right) \vee \left( {y \le - x \wedge x < 0} \right)} \\ {\left( {y \le x \wedge x > 0} \right) \vee \left( {y \ge x \wedge x < 0} \right)} \\ \end{array}} \right. \]



Sem comentários:

Enviar um comentário